Additive Sanitization: A Technique for Pattern-Preserving Anonymization for Time-Series Data

ثبت نشده
چکیده

A time series is a set of data normally collected at usual intervals and often contains huge amount of individual privacy. The need to protect privacy and anonymization of time-series while trying to support complex queries such as pattern range and pattern matching queries. The conventional (k, p)-anonymity model cannot effectively address this problem as it may suffer serious pattern loss. In the proposed work a new technique called additive sanitization has been developed which increment the supports of item sets and their subsets in order to reduce pattern loss and prevent linkage attack.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification and Evaluation the Privacy Preserving Data Mining Techniques by using a Data Modification-based Framework

In recent years, the data mining techniques have met a serious challenge due to the increased concerning and worries of the privacy, that is, protecting the privacy of the critical and sensitive data. Different techniques and algorithms have been already presented for Privacy Preserving data mining, which could be classified in three common approaches: Data modification approach, Data sanitizat...

متن کامل

DATA PRIVACY on E-HEALTH CARE SYSTEM

The main goal of this research is to develop and implement data privacy appropriate technique that fit with E-health system. Privacy preserving data is to develop methods without increasing the risk of misuse of the data used to generate those methods. A number of effective methods for privacy preserving data mining have been proposed. Privacy preservation of sensitive information is a key fact...

متن کامل

An Effective Method for Utility Preserving Social Network Graph Anonymization Based on Mathematical Modeling

In recent years, privacy concerns about social network graph data publishing has increased due to the widespread use of such data for research purposes. This paper addresses the problem of identity disclosure risk of a node assuming that the adversary identifies one of its immediate neighbors in the published data. The related anonymity level of a graph is formulated and a mathematical model is...

متن کامل

Privacy and Utility Preserving Task Independent Data Mining

Today’s world of universal data exchange, there is a need to manage the risk of unintended information disclosure. Publishing the data about the individuals, without revealing sensitive information about them is an important problem. K-anonymization is the popular approach used for data publishing. The limitations of Kanonymity were overcome by methods like L-diversity, T-closeness, (alpha, K) ...

متن کامل

On the Utility of Anonymized Flow Traces for Anomaly Detection

The sharing of network traces is an important prerequisite for the development and evaluation of efficient anomaly detection mechanisms. Unfortunately, privacy concerns and data protection laws prevent network operators from sharing these data. Anonymization is a promising solution in this context; however, it is unclear if the sanitization of data preserves the traffic characteristics or intro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014